We are happy to announce that our paper entitled “Optimal Experimental Design for Uncertain Systems Based on Coupled Differential Equations,” has now been published in IEEE Access.
Youngjoon Hong, Bongsuk Kwon, and Byung-Jun Yoon, “Optimal Experimental Design for Uncertain Systems Based on Coupled Differential Equations,” IEEE Access, doi: 10.1109/ACCESS.2021.3071038.
In this work, we present a general optimal experimental design (OED) strategy for an uncertain system that is described by coupled ordinary differential equations (ODEs), whose parameters are not completely known. As a vehicle to develop the OED strategy, we focus on non-homogeneous Kuramoto models in this study as the primary example. The proposed OED strategy quantifies the objective uncertainty of the Kuramoto model based on the mean objective cost of uncertainty (MOCU), where the optimal experiment can be identified by predicting the one in a given experimental design space that is expected to maximally reduce the MOCU.

Our study highlights the importance of quantifying the operational impact of the potential experiments in selecting the optimal experiment and it demonstrates that the MOCU-based OED scheme enables us to minimize the objective cost (i.e., cost of robust control in the application considered in this paper) of the uncertain Kuramoto model with the fewest experiments compared to other alternatives.
This work was performed in collaboration with Prof. Youngjoon Hong (Department of Mathematics, Sungkyunkwan University) and Prof. Bongsuk Kwon (Department of Mathematical Sciences, Ulsan National Institute of Science and Technology).